
Effects, Substitution and Induction
An Explosive Ménage à Trois

Pierre-Marie Pédrot, Nicolas Tabareau

INRIA

TYPES 2019
13th June 2019

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 1 / 19



It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 2 / 19



It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 2 / 19



It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 2 / 19



It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 2 / 19



It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 2 / 19



The Most Important Issue of Them All

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 3 / 19



The Most Important Issue of Them All

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 3 / 19



The Most Important Issue of Them All

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 3 / 19



The Most Important Issue of Them All, Bis

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 4 / 19



The Most Important Issue of Them All, Bis

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 4 / 19



The Most Important Issue of Them All, Bis

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 4 / 19



The Most Important Issue of Them All, Bis

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 4 / 19



Thesis

We want a type theory with effects!

To program more!
Non-termination
Exceptions
State...

To prove more!
Classical logic
Univalence
Choice...

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 5 / 19



Thesis

We want a type theory with effects!

To program more!
Non-termination
Exceptions
State...

To prove more!
Classical logic
Univalence
Choice...

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 5 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
We are not the only ones, but our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 6 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
We are not the only ones, but our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 6 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
We are not the only ones, but our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 6 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
We are not the only ones, but our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 6 / 19



The Important Bit

This is not a coincidence!

Herbelin / Barthe-Uustalu results are instances of a generic phenomenon!

Also, this is kind of folklore.

... but I don’t recall reading it formally anywhere.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 7 / 19



The Important Bit

This is not a coincidence!

Herbelin / Barthe-Uustalu results are instances of a generic phenomenon!

Also, this is kind of folklore.

... but I don’t recall reading it formally anywhere.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 7 / 19



Effects, Effects Everywhere!

Definition
A type theory has observable effects if there is a closed term t : B that is
not observationally equivalent to a value, i.e. there is a context C[·] s.t.

C[true] ≡ true and C[false] ≡ true but C[t] ≡ false

This happens for many kind of effects, including continuations.

Such terms are typically called non-standard booleans.

e.g. a function is_empty : ΠA.A → B deciding inhabitation of a type.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 8 / 19



Effects, Effects Everywhere!

Definition
A type theory has observable effects if there is a closed term t : B that is
not observationally equivalent to a value, i.e. there is a context C[·] s.t.

C[true] ≡ true and C[false] ≡ true but C[t] ≡ false

This happens for many kind of effects, including continuations.

Such terms are typically called non-standard booleans.

e.g. a function is_empty : ΠA.A → B deciding inhabitation of a type.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 8 / 19



A Tension Build-up

Definition
A type theory enjoys substitution if the following rule is derivable.

Γ, x : X ⊢ • : A Γ ⊢ t : X
Γ ⊢ • : A{x := t}

Substitution is usually taken for granted

... hint: this is a bias

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 9 / 19



A Tension Build-up

Definition
A type theory enjoys substitution if the following rule is derivable.

Γ, x : X ⊢ • : A Γ ⊢ t : X
Γ ⊢ • : A{x := t}

Substitution is usually taken for granted

... hint: this is a bias

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 9 / 19



Almost There

Definition
A type theory enjoys dependent elimination on booleans if we have:

Γ, b : B ⊢ P : □ Γ ⊢ • : P{b := true} Γ ⊢ • : P{b := false}
Γ, b : B ⊢ • : P

The landmark of dependent type theory, used to encode induction!

Absence of dependent elimination smells of trivial theories.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 10 / 19



Almost There

Definition
A type theory enjoys dependent elimination on booleans if we have:

Γ, b : B ⊢ P : □ Γ ⊢ • : P{b := true} Γ ⊢ • : P{b := false}
Γ, b : B ⊢ • : P

The landmark of dependent type theory, used to encode induction!

Absence of dependent elimination smells of trivial theories.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 10 / 19



« Ciel, mon mari ! »

Sounds like desirable features, right?

Theorem (Explosive Ménage à Trois a.k.a. Fire Triangle)
Effects + substitution + dep. elimination ⊢ logically inconsistent.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 11 / 19



« Ciel, mon mari ! »

Sounds like desirable features, right?

Theorem (Explosive Ménage à Trois a.k.a. Fire Triangle)
Effects + substitution + dep. elimination ⊢ logically inconsistent.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 11 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 12 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 12 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 12 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions
Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 12 / 19



It is not a Bug, it is a Feature™

Dependency entails one major difference with usual type systems.

Meet conversion:
A ≡β B Γ ⊢ M : B

Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Combine that with this other observation and we’re in trouble.

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 13 / 19



It is not a Bug, it is a Feature™

Dependency entails one major difference with usual type systems.

Meet conversion:
A ≡β B Γ ⊢ M : B

Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Combine that with this other observation and we’re in trouble.

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 13 / 19



It is not a Bug, it is a Feature™

Dependency entails one major difference with usual type systems.

Meet conversion:
A ≡β B Γ ⊢ M : B

Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Combine that with this other observation and we’re in trouble.

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 13 / 19



It is not a Bug, it is a Feature™

Dependency entails one major difference with usual type systems.

Meet conversion:
A ≡β B Γ ⊢ M : B

Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Combine that with this other observation and we’re in trouble.

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 13 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

In call-by-name + effects:
(λx.M) N ≡ M{x := N} ⇝ arbitrary substitution

(λb : bool.M) fail ⇝ non-standard booleans

Substitution is a feature of call-by-name

In call-by-value + effects:
(λx.M) V ≡ M{x := V} ⇝ substitute only values

(λb : B.M) N ≡ (λb : B.M) V ⇝ boolean values are booleans

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 14 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

In call-by-name + effects:
(λx.M) N ≡ M{x := N} ⇝ arbitrary substitution

(λb : bool.M) fail ⇝ non-standard booleans

Substitution is a feature of call-by-name

In call-by-value + effects:
(λx.M) V ≡ M{x := V} ⇝ substitute only values

(λb : B.M) N ≡ (λb : B.M) V ⇝ boolean values are booleans

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 14 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

In call-by-name + effects:
(λx.M) N ≡ M{x := N} ⇝ arbitrary substitution

(λb : bool.M) fail ⇝ non-standard booleans

Substitution is a feature of call-by-name

In call-by-value + effects:
(λx.M) V ≡ M{x := V} ⇝ substitute only values

(λb : B.M) N ≡ (λb : B.M) V ⇝ boolean values are booleans

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 14 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

In call-by-name + effects:
(λx.M) N ≡ M{x := N} ⇝ arbitrary substitution

(λb : bool.M) fail ⇝ non-standard booleans

Substitution is a feature of call-by-name

In call-by-value + effects:
(λx.M) V ≡ M{x := V} ⇝ substitute only values

(λb : B.M) N ≡ (λb : B.M) V ⇝ boolean values are booleans

Dependent elimination is a feature of call-by-value
Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 14 / 19



Impossible is not French

Three knobs ⇒ Four solutions

▷ Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on.

▷ Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

▷ CBV rules, respect values, and dump substitution: one weird trick

The least conservative approach

▷ Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 15 / 19



Impossible is not French

Three knobs ⇒ Four solutions

▷ Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on.

▷ Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

▷ CBV rules, respect values, and dump substitution: one weird trick

The least conservative approach

▷ Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 15 / 19



Impossible is not French

Three knobs ⇒ Four solutions

▷ Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on.

▷ Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

▷ CBV rules, respect values, and dump substitution: one weird trick

The least conservative approach

▷ Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 15 / 19



Impossible is not French

Three knobs ⇒ Four solutions

▷ Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on.

▷ Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

▷ CBV rules, respect values, and dump substitution: one weird trick

The least conservative approach

▷ Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 15 / 19



Impossible is not French

Three knobs ⇒ Four solutions

▷ Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on.

▷ Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

▷ CBV rules, respect values, and dump substitution: one weird trick

The least conservative approach

▷ Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 15 / 19



A Generic Workaround
We have a proposal for a generalization of CBPV to factor both.

∂CBPV
(We had to pick a fancy name.)

The main novelties: two for the price of one

• Not one, but two parallel hierarchies of universes: □v vs. □c!
• Not one, but two let-bindings!

Γ ⊢ t : F A Γ ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ let x := t in u : X

Γ ⊢ t : F A Γ, x : A ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ dlet x := t in u : let x := t in X

• Justified by all of our syntactic models so far (and we have quite a few)

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 16 / 19



A Generic Workaround
We have a proposal for a generalization of CBPV to factor both.

∂CBPV
(We had to pick a fancy name.)

The main novelties: two for the price of one

• Not one, but two parallel hierarchies of universes: □v vs. □c!
• Not one, but two let-bindings!

Γ ⊢ t : F A Γ ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ let x := t in u : X

Γ ⊢ t : F A Γ, x : A ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ dlet x := t in u : let x := t in X

• Justified by all of our syntactic models so far (and we have quite a few)

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 16 / 19



A Generic Workaround
We have a proposal for a generalization of CBPV to factor both.

∂CBPV
(We had to pick a fancy name.)

The main novelties: two for the price of one

• Not one, but two parallel hierarchies of universes: □v vs. □c!
• Not one, but two let-bindings!

Γ ⊢ t : F A Γ ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ let x := t in u : X

Γ ⊢ t : F A Γ, x : A ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ dlet x := t in u : let x := t in X

• Justified by all of our syntactic models so far (and we have quite a few)

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 16 / 19



Many More

This was a very high-level talk

Many things I did not discuss here!

• A good notion of purity: thunkability vs. linearity
• Complex ∂CBPV encodings
• Presheaves as observationally pure terms of an impure CBV theory

http://pédrot.fr/articles/dcbpv.pdf

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 17 / 19

http://pédrot.fr/articles/dcbpv.pdf


Conclusion

• Effects and dependent types: choose your side.
⇝ Purity, CBN, CBV, Michael Bay?

• Even inconsistent theories have practical interest.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 18 / 19



Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pédrot & Tabareau (INRIA) An Explosive Ménage à Trois 13/06/2019 19 / 19


